k^2-13k+22=0

Simple and best practice solution for k^2-13k+22=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^2-13k+22=0 equation:



k^2-13k+22=0
a = 1; b = -13; c = +22;
Δ = b2-4ac
Δ = -132-4·1·22
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-9}{2*1}=\frac{4}{2} =2 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+9}{2*1}=\frac{22}{2} =11 $

See similar equations:

| y=2,700+8X | | k^2-13k+44=0 | | 3+4x=4x+5 | | 7y-5=86 | | 3^(2x+1)=18^(x) | | 3+4x=4x=5 | | (2x+1)(5x+1)(4x+1)=0 | | 2×43=9x-14 | | 7(-1-8x)+2(8-2x)=9 | | (x²+5x)(x²+5x-3)-18=0 | | 4x+2=88 | | 2×67=16x-10 | | 2x+6+x=3(x+2) | | 2x=3(x-10)=45 | | 4^x-15(2^x)+256=0 | | 5y+16+114=180 | | 3y-4=38 | | -p-11+7p=p | | 3/x=5/3x-10 | | 5y-23=72 | | -32=-4-7(-3p-2) | | -32=-4-7(-3p-2 | | 1/9x+7=16 | | -p-4p=-6(7+2p)+12(p+6) | | 1/6x+7=21 | | 2(-6m+1)+2(6-4m)=34 | | x/5+11=24 | | v/2+9=18 | | 26=x/2+17 | | (5x-24)+(3x+16)=180 | | 0.766=16/x | | 1-4(2x+1)=x*x+4 |

Equations solver categories